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A novel approach to nitro-substituted cyclopropanes and spiropentanes via oxidation of the correspond-
ing amines with dimethyldioxirane is reported. The method is used successfully for the preparation of a
series of nitrocyclopropanes as well as for the first synthesis of 1,4-dinitrospiro[2.2]pentane.
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Taking aniline production as an example, the general logic of or-
ganic synthesis is to consider nitro-compounds as precursors of
amino derivatives. However, in some particular cases, it is neces-
sary to use the reverse process for the synthesis of, for example,
nitrocyclopropanes. Nitro- and polynitro-cyclopropanes are of con-
siderable interest as potential high energy materials where the
strained cyclopropane-containing skeleton is in favorable conjunc-
tion with explosophore nitro functionalities.1 The synthesis of ni-
tro-substituted cyclopropanes is a complicated procedure in
comparison with the preparation of their open-chain analogs.1,2

Methods for the direct introduction of nitro group(s) into three-
membered rings are impractical due to considerable decomposi-
tion and poor yields of the desired products.3 A few approaches
to nitrocyclopropanes consist of the formation of a small ring from
precursors that already contain nitro groups. Among these meth-
ods are the 1,3-elimination of c-X-substituted nitropropanes,4 dea-
zotization of nitropyrazolines,5 [1+2] cycloaddition of
nitrocarbenes to alkenes,6 reaction of a,b-unsaturated nitro-com-
pounds with sulfur ylides and related processes,7 etc. Recently,
we proposed novel approaches to nitro derivatives of triangulanes8

via [1+2] cycloaddition of ethyl nitrodiazoacetate to methylenecy-
clopropanes9 and to 1,1-dinitrocyclopropanes through [3+2] cyclo-
addition of diazo-compounds to dinitroethenes.10 However, all
these methods have disadvantages such as the formation of com-
plex mixtures of products, low yields and difficult to access start-
ing materials. Therefore, the transformation of an N-containing
functional group(s) in a small ring into a nitro group, for example,
ll rights reserved.

).
oxidation of the amino group, seems to be an improved alternative
to the methods proposed earlier. Herein, we report a novel syn-
thetic approach to nitro-substituted cyclopropanes and spiropen-
tanes via oxidation of aminocyclopropane derivatives.

It is well known that the oxidation of substituted aminocyclopro-
panes under different oxidation conditions leads to ring-opened
products.11 In this connection, the main goal of our investigation in-
volved the search for appropriate conditions for the chemoselective
oxidation of an amino group wherein a cyclopropane or spirocyclic
system would be not affected.

For our investigation we used commercially available aminocy-
clopropane 1a and various other aminocyclopropanes and spir-
opentanes 1b–g which were prepared via a known and efficient
synthetic sequence12 as shown in Scheme 1.13 The transformations
of 3b–g into 6b–g were carried out without isolation of the inter-
mediate azides 4b–g and the products of Curtius rearrangement
5b–g. The hydrochlorides 6b–g were purified by recrystallization
before conversion into the corresponding amines 1b–g.

According to the literature, the most efficient oxidants for the
transformation of primary amino groups at secondary alkyl carbons
into a nitro functionality are m-chloroperbenzoic acid (MCPBA),14

ozone,15 and dimethyldioxirane (DMDO).16 We carried out a brief
survey of these oxidizing agents employing aminocyclopropanes
1b,e as model substrates for optimization of the oxidation condi-
tions (Table 1). Unfortunately, the simplest aminocyclopropane 1a
was found to be an unsuitable model due to its high volatility.

We found that the oxidation of amines 1b,e with MCPBA affor-
ded 4,5-dihydroisoxazoles 7b,e as the only products (Table 1,
entries 1 and 2). The formation of 7b,e proceeded presumably via
oxidation of 1b,e into unstable nitrosocyclopropanes A followed
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Scheme 1. Synthesis of starting aminocyclopropanes 1b–g.

Table 1
Screening of oxidants with aminocyclopropanes 1b,e
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a Reaction conditions: tenfold molar excess of MCPBA, 1,2-dichloroethane, reflux,
4 h.

b Reaction conditions: 6 wt % O3/O2–SiO2, 1.8 mL/s, �78 �C, 50 min.
c Reaction conditions: 0.08 M DMDO in acetone, sevenfold molar excess of

DMDO, rt, 1 h, dark.

Table 2
Oxidation of amines 1a,c,d,f and hydrochloride 6g with DMDO
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by ring cleavage and subsequent formation of the five-membered
heterocycle 7 (Scheme 2). Circumstantial evidence for intermedi-
ate A was obtained by the immediate appearance of a blue color
when 1b,e were treated with MCPBA. To the best of our knowledge,
such rearrangement of nitrosocyclopropanes into isoxazolines has
NH2

1b,e 7b,e

m -CPBA

7b: R1 = H, R2 = Ph, 24%
7e: R1, R2 = -(CH2)3-, 54%

R1
R2 N
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O
O
NR1
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Scheme 2. Oxidation of aminocyclopropanes 1b,e into isoxazolines 7b,e.
not been reported previously. At the same time, it seems to be
analogous to the well-known 1,3-sigmatropic vinylcyclopropane–
cyclopentene rearrangement and related processes.17

Unfortunately, ozone was also found to be unsuitable as an oxi-
dant for aminocyclopropanes 1b,e affording the desired nitrocyclo-
propanes 8b,e in very poor yields (Table 1, entries 3 and 4).
However, DMDO proved to be a suitable oxidizing agent. In spite
of the low conversion of 1b into target nitrocyclopropane 8b (Table
1, entry 5), DMDO was efficient for the oxidation of 1e into the cor-
responding nitrocyclopropane 8e in a good yield (Table 1, entry 6).
We therefore utilized a 0.08 M solution of DMDO18 in acetone as
the oxidant for the conversion of a series of aminocyclopropanes
1a,c,d,f and hydrochloride 6g into the corresponding nitrocyclo-
propanes 8a,c,d,f,g (Table 2).
5

NH2

H2NHCl

HCl
6g

NO2

O2N

8g

56b

a Reaction conditions: 0.08 M DMDO in acetone, sevenfold molar excess of
DMDO, rt, 1 h, dark.

b Reaction conditions: 0.08 M DMDO in acetone–water (9:1), tenfold molar
excess of DMDO per amino group, rt, 24 h, dark.
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Thus, we found that the oxidation of monoamines 1a,c,d,f with
DMDO proceeded chemoselectively resulting in the corresponding
nitrocyclopropanes 8a,c,d,f in good yields (Table 2, entries 1–4).19

It should be noted that the use of MCPBA in the case of amines 1c,d
was also successful and led to the corresponding nitrocyclopro-
panes 8c,d as single products in 50% and 54% yields, respectively.

Finally, an important application of the reported oxidation pro-
cedure was the successful synthesis of 1,4-dinitrospiro[2.2]pen-
tane (8g) (Table 2, entry 5).20 Dinitrospiropentane 8g is a novel
representative of polynitrotriangulanes in which each ring is
substituted with a nitro group. Earlier, a 1,2-dinitrospiro[2.2]pen-
tane bearing both nitro functionalities on the same cyclopropane
ring was synthesized via oxidative cyclization in moderate yield.4g

For the synthesis of dinitrospiropentane 8g we simplified the oxi-
dation procedure by utilization of the double hydrochloride salt 6g
instead of the free diamine 1g which was less stable and less con-
venient to work with. The oxidation of 6g into the corresponding
dinitrospiropentane 8g was realized under the standard conditions
using a tenfold molar excess of DMDO per amino group.

In conclusion, DMDO was found to be an efficient oxidizing
agent for the conversion of amino-substituted cyclopropanes and
spiropentanes into the corresponding nitrocyclopropane deriva-
tives. The reported method is chemoselective and proceeds under
mild conditions and in moderate to good yields to afford a variety
of strained nitro-substituted compounds bearing a cyclopropane
ring and spiroannulated moieties which are difficult to access via
other synthetic approaches.

Caution: Although we have not met any problems in handling
these compounds, full safety precautions should be taken due to
their potentially explosive nature.
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pressure. The crude product was purified by column chromatography (eluent:
chloroform). The resulting nitrocyclopropane 8g is stable on storage at 5 �C
over a long time.
1,4-Dinitrospiro[2.2]pentane (8g): mixture of four isomers A:B:C:D = 34:30:26:10;
Rf 0.54 (CHCl3); 1H NMR (400 MHz, CDCl3): isomer A: d 1.89 (dd, 2J = 6.5,
3J = 6.2 Hz, 2H, CH2), 2.34 (dd, 2J = 6.5, 3J = 3.4 Hz, 2H, CH2), 4.88 (dd, 3J = 3.4,
6.2 Hz, 2H, CH); isomer B: d 1.91 (dd, 2J = 6.8, 3J = 7.0 Hz, 2H, CH2), 2.52 (dd,
2J = 6.8, 3J = 3.6 Hz, 2H, CH2), 4.77 (dd, 3J = 3.6, 7.0 Hz, 2H, CH); isomer C: d 2.03
(dd, 2J = 6.8, 3J = 6.7 Hz, 2H, CH2), 2.29 (dd, 2J = 6.8, 3J = 3.7 Hz, 2H, CH2), 4.69
(dd, 3J = 3.7, 6.7 Hz, 2H, CH); isomer D: d 2.13 (dd, 2J = 6.9, 3J = 6.9 Hz, 2H, CH2),
2.36 (dd, 2J = 6.9, 3J = 3.9 Hz, 2H, CH2), 4.69 (dd, 3J = 3.9, 6.9 Hz, 2H, CH); 13C
NMR (100 MHz, CDCl3): isomer A: d 17.1 (1J = 170 Hz, 2CH2), 28.4 (C), 58.5
(1J = 192 Hz, 2CH); isomer B: d 16.3 (1J = 173 Hz, 2CH2), 30.9 (C), 59.5
(1J = 197 Hz, 2CH); isomer C: d 16.8 (1J = 171 Hz, 2CH2), 27.5 (C), 59.9
(1J = 195 Hz, 2CH), isomer D: d 18.0 (1J = 171 Hz, 2CH2), 26.7 (C), 58.5
(1J = 197 Hz, 2CH). MS (EI, 70 eV) m/z: 66 ([M�2NO2]+, 5), 65 (18), 55 (37),
53 (20), 41 (23), 39 (100), 30 (38), 27 (32). MS (ESI) calcd for C5H6N2O4 (M+H)+:
159.12, found: 159.10.


